If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+20a-65=0
a = 1; b = 20; c = -65;
Δ = b2-4ac
Δ = 202-4·1·(-65)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{165}}{2*1}=\frac{-20-2\sqrt{165}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{165}}{2*1}=\frac{-20+2\sqrt{165}}{2} $
| n^2+40=0 | | 10=-2n+22 | | 3/5x+3=13 | | x+(x+1)+(x+2)+(x+3)=4 | | -20x+33=7 | | 6/5c+-6=c+7 | | P=8x-(50+2x) | | Y+4=2x+2 | | (3.14)x^2=1/4(3.14)x^2 | | 4x+10=7+16 | | 4x+10=7-10x | | r^2=10r-24 | | 10=-h | | (2/3)=b-(1/4) | | 3(n-4)=5n+3-2n | | x*x*x-49x=95 | | 3.7d+7.3=1.4d+21.1 | | 28=64-9x^2 | | -2=s-6 | | 3w-13=(1/4)(52-12w) | | 6e=18-2e | | x-11=-34 | | 3x+40+5x−52=180 | | -(3/8)+n=-(7/8) | | 6x+3x-12+30=90 | | 2r-9=155 | | 8g+2g-7g-2=13 | | 6x+5=95 | | 4h-3h+2h-h+2=14 | | (a+4)(a+6)=0 | | x/5-13=24 | | 58x+138=180 |